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Vertical Interpolation of Height and Temperature for Model Input/Output

I. Introduction

Heights and temperatures must be vertically interpolated since they are

not observed, reported, analyzed, forecasted, and verified all at the same

pressures. Since the accuracy of the interpolation can affect the overall

skill of the analysis/forecast system it is good to have some well-defined

principles and procedures in hand to perform the interpolation. It is taken

as a basic tenet that consistency is important in all procedures used. This

note will deal with both the basic principles underlying the proposed vertical

interpolation method and the derivation of a concrete set of accurate procedures.

The problem consists in going from mandatory (and possibly significant)

level data to a model vertical coordinate and back with minimum error. The

fact that a forecast has been performed by the model in the interum is

irrelevant.

II. Basic Principles

Derivations from a hydrostatic balance are not definable from radiosonde

observations because of reduction methods. The deviations can be considered

to have a normal distribution with zero mean. Therefore, it is justified to

use the hydrostatic equation to relate temperature and height differences.

It can be written ff ~iy ATd- (-1.1)
In integrated form

* w+A ~ 4 0 V P+id P F_ ~~~P*S d Z i- t d z--R A T d P . : ~~( II.2)

It is also noted that since all NMC operational forecase models are

hydrostatic, hydrostatically consistent heights and temperatures provide
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needed model input. Furthermore, the reported heights are themselves obtained

from theradiosonde.reports by hydrostatic integration of the temperature field.

Model input is customarily provided by input at mandatory levels only,

so that the height field includes the influence of all temperatures, but not

vice versa. Therefore, we may regard the height field to be most representative

of the overall structure of the atmosphere. For these reasons, this note

will regard the height field to be of more fundamental nature than temepratures.

In essence, this means that all vertical interpolation will be interpolation

of the height field, with temperatures determined hydrostatically from it.

The weight of a column of air, expressed as height differences, is

related to the virtual temperature of the air, not the dry air temperature.

Thus, the temperature in (II.1-2) is the virtual temperature. It is given

approximately by

i Of 0,:I 6t0q)T (II.3)

where Tv is the virtual temperature, T is the temperature, and q is the

specific humidity. In all that follows, temperature will be used to mean

virtual temperature. It is noted that none of the NMC operational models

properly takes the effect of moisture into account for input and output.

This should be an area for future consideration.

One test of a vertical interpolation is that it should produce no errors

when going from mandatory level heights to a model with levels at the mandatory

pressures and back to mandatory levels. This requirement will eliminate some

schemes which may be good in an RMS sense but do not pay proper attention to

the discrete structure of the problem. Reversibility and consistency are

principles which will guide the development of suitable interpolation schemes.
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III. Design of a Method

There are a large number of methods that would meet the design criteria

set up in the last section. They are limited, however, to methods which have

no error at the input levels, i.e., co-location polynomials are suitable, but

cubic splines are not. This note will consider only fairly simple forms--in

which the height varies quadratically with a vertical variable. The forms

examined are

{T I varies linearly with 

6?~~~~~~
(III.1)

where one choice on the left is taken with one choice on the right. Variables

have the usual definition.

The accuracy of an interpolation scheme may be judged by the error in

going from mandatory levels to model structure and back. In this process it

is necessary to pay attention to the model structure, including vertical

staggering of variables and required thermodynamic variable. But it is not

needed to actually make a forecast. In fact, doing so would only add error.

It is also not necessary (indeed, it is not desirable) for the interpolation

method to use the model's definition of the mid-layer coordinate (if it

exists).

IV. Linear Equations

The next section will give the justification for using the method

presented in this section. It is shown that the most accurate of the equations

(III.1) is

(IV.1)
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The Appendices A-H will give the equations for all the 8 methods since they

may at times be useful. Here, only the equation for (IV.1) will be considered.

Let the temperature variation over some pressure range be given by

T-=o +L (P- P) (IV.2)

where P l- np. Substitution into the hydrostatic equation, (II.2) gives

P+A P

PAP/1'~ = -~fp (7 . (P-~),)OfP

(IV.3)

0 - ^s ~(T- b Pop RbgP+0Ap A P

solving for T gives

z5 6( P -e(IV.4)

Consider application of (IV.3-4) for input from mandatory level data. On

input to a numerical model, the heights are known. Also, the lapse rate may

be estimated between mandatory levels to give an estimate of b = dT/dlnp.

Therefore, (IV.4) gives the relationship between T and P. A natural choice

is

R AP (IV.5)

and

P=~~~I P+P P
(IV.6)

Note that this choice gives a usual form for the relationship between a mean

temperature, T, and the height difference and also eliminates the lapse rate

from the forms for T and P. A similr procedure is followed in the Appendices

to find the relationship between .the mean thermodynamic variable and "mean"

coordinate for the other forms. It is stressed that they can never be chosen

independently.
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Now, consider the interpolation of heights within a layer where (IV.2)

holds. Integration from the base of the layer at (Z0 ,Po) to the In (pressure)

= P gives

R(i -T- my it- b P)(P-F,) - 296( P +- PO)P t p _p0)X (IV.7)

This formula can be used to provide model heights at given pressures. Details

of the actual procedure will be given later.

An equation is also needed to give the pressure at a known height. It

is used to find the surface pressure for the model terrain height. Figure 1

shows the data arrangement.

10

Figure 1. Data arrangement for solution for pressure at given height.

In this case

_ Pl- P'= (IV.8)

Define i = Z-, SP P-- i-' a u -P z --P (IV.9)

Then the hydrostatic equation gives

; SZ ~~:0 ~g6 Of T t :; t a f -e j 4A P ( IV. 10)
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Straight-forward solution for SP gives

6 |P= + a4 ̂) + A ZJO-Zb9sE7'D}(IV.li)
:~ ~ ~~~~

But this form is unsuitable since b can be small. Instead, (IV.10) is solved

by a different application of completion of squares (Shuman and Hovermale,

1968). The result is

SP (IV.12)
z9 2

It has been stated that it is important to use the proper P with T.

Letting E (P) be the error in P, then the error in the height difference for

a layer of ln-pressure thickness 8P is

: e(A )= bA ?. (L) (IV.13)

For errors from using mean in (pressure) based upon p or e , the error in

height should be from less than a meter to several meters at high altitudes.

V. Determination of Best Linear Law

It is believed that the temperature law (III.1) which best fits the

atmosphere will also be the best law to use for the vertical interpolation.

This section examines the determination of that best fit. Mandatory level

data are used for the eastern U.S. for all reporting radiosonde stations and

all possible pressure levels, a linear interpolation is made between alternate

pressure levels. I.e., 1000 mb and 700 mb temperatures are interpolated to

850 mb; 850 and 500 mb temperatures are interpolated to 700 mb; etc. The

interpolated temperatures are compared with the reported temperatures and

mean error, RMS error and error frequency distributions are generated.

Figures 2 -9 show the mean and RMS errors as a function of pressure for the 8
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temperature laws. Those using temperature (rather than potential temperature)

are all reasonably close and are best. The best overall is ToClnp with TC Z

a close second. The largest errors are near the tropopause and ground.

Figures 10-11 show the frequency distribution of the errors, averaged

with respect to pressure. Again, T oclnp is shown to be most accurate. The

error pattern is skewed toward positive values because of the positive errors

near the tropopause and ground. All the methods using potential temperature,

on the other hand, have significant negative and positive errors. These

methods have extremely large RMS errors above 20 mb.

VI. Recommended Procedures

Figure 12 shows data arrangement for mandatory levels and both staggered

and unstaggered model structure. The method oftinterpolation will differ

somewhat for staggered and unstaggered model structure. It will also differ

slightly between models using T and those using 9 as the thermodynamic

variable.

Preparation for interpolation begins with solving for mean temperature

(T) or potential temperature (0) for the layers between mandatory levels,

using the appropriate form of the hydrostatic equation. The specification of the

temperature in each layer is completed by specifying b, the lapse rate. The

LFM analysis analyzes temperatures as well as heights so that the lapse is

directly specified. More usually, a temperature difference across two layers

needs to be used, where the temperatures have been determined hydrostatically.

At this point, a distinction must be made between models with staggered and

unstaggered variables in the vertical. However, in any case, the height

interpolation will be to model levels. (Levels are defined to be constant

sigma surfaces which bound layers. Usually, the primary definition of sigma-

values is at levels.) The interpolation formulas are used to integrate the
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height from the ground upward to each sigma-level. When parts of more than

one mandatory data layer are between two sigma-levels, then the temperature

profile appropriate to each part must be used.

A. Staggered grid

For staggered T (or 0 ) and Z, the interpolated level heights are used,

together with the model hydrostatic equation to obtain the model thermodynamic

variable. On output the model heights are first obtained from the model

thermodynamic variable and model form of the hydrostatic equation. Interpolation

from the model heights to mandatory level heights is accomplished using

only interpolation forms to define mean temperature and mean layer pressure.

B. Unstaggered

In this case the model heights are in the middle of layers, but the

interpolation still begins by interpolating heights to model levels. From

the level heights, determine the layer temeprature by using the interpolation

form of the hydrostatic equation. If the wrong thermodynamic variable is

obtained ( 0 versus T), then use the interpolation-defined mean coordinate

to make the conversion. Model heights, in layers, are obtained when needed

by using the model hydrostatic equation.

On output the process is reversed. First, the model thermodynamic

variable is converted, if necessary, to the form used in the interpolation.

The interpolation-defined mean coordinate is used. Lapse rates are defined

and interpolation forms are used to interpolate to mandatory levels. As on

input, the heights are obtained by integration of the temperature profile.

C. Determination of lapse rate

The effect of the lapse rate on the thickness of a layer is of second

order in ln (pressure) (see IV.10). Therefore, the specification of the

lapse is not critical, but the best estimate should be used. The data and

model structure will suggest the appropriate method. Figure 13 shows three
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methods presently used somewhere in NMC codes. Figure 13a shows the easiest

situation. T is determined (hydrostatically) from Z's and b's are determined

from the T's. Figure 13b shows the more usual situation where only Z's are

input. Then T's are obtained from the Z's and the b's are obtained from the

T's by finite differences. In Figure 13c, p** is the tropopause level, so we

will want to extrapolate temperatures from below and above. As for Figure 13b,

Z's determine T's.

D. Vertical interpolation of residuals in the optimum interpolation
analysis

It will be shown in this section that the same procedure can be used for

vertical interpolation of 0/I height residuals as for the total height field.

First, it will be shown that the hydrostatic equation is the same, and second

it will be shown that the temperature law for the residuals is the same as

for the total field, but with the lapse rate determined by the residuals.

The hydrostatic equation is written (for a layer)1 -- T AP :V(VI.1)
For an updated layer

Az -t-S -t (r9SJ)AP (VI.2)

The pressure thickness remains the same and the height increment 5 Z, determines

the change in the mean temperature, ST. Subtracting (VI.1) from (VI.2)

gives the hydrostatic equation for the residuals.

S= - 7-STAP (VI.3)

Now, consider the temperature variation. Originally, it is assumed to be

i 0 T = T -~ (P-P) (VI.4)

with
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-- A Z~ am ~= +~ . = dTT=sp ,P P.,- an4 (VI. 5)

After update

T: + ST= ("IsT) + , ('P ') (VI.6)

where 
:' = d -+ST) 

d?: dl' j~~~~~~~~~(vI.7)

Subtracting (VI.4) from (VI.6) gives the temperature law for the residuals

S T= ST +(Jb'--0)(P-P)

= aT(()r) (e-P) (VI.8)
=~ST+ d

Equations (VI.3), (VI.8) show that the residuals follow the same equations as

the full fields, only the correct lapse rate must be used in (VI.8). Therefore,

the methods recommended elsewhere in this note equally apply to the vertical

interpolation of 0/I analysis residuals to given pressure levels.

E. SHUELL pressure reduction

The SHUELL pressure reduction method is a combination of methods of F.

Shuman and J. Newell. It is described in Technical Procedures Bulletin No.

57. The methods uses the assumption that temperature varies linearly with

height. The uniqueness of the method lies in the way the mean layer temperature

and lapse rate are specified. The LFM and Spectral models use slightly

different formulations. The method as described here uses the equations of

Appendix D. Refer to Figure 14 for notation. In the LFM, the layer between

Z1 and Zs is the boundary layer; in the Spectral model, Z1 and Zs are the

same height.

First, define the mean temperature for the lowest sigma-layer used (Z1

to Z2 ).
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T- - (VI.9)

where 

(VI.l0)

and F = -.0065 deg/m is the standard atmosphere lapse rate. Next, extrapolate

temperature downward, with lapse rate , to Zs and Z=0.

rs = % - ( (VI.)

A~~o = XY,~~~ -:~~ ~~ i(VI.12)

Next, the lapse rate below ground is specified to model the procedure

followed at observing stations (see Bigelow, 1902). The lapse rate is determined

from Ts and To. However, the provisional value of To from (VI.12) may be

changed first as follows:

1) If To<_290.66K, then no change to To

22) If Ts>290.66K, then To=290.66-.005*(Ts-290.66)

3) If To>290.66K and Ts<290.66K, then To=290.66K.

The lapse rate is calculated as

(VI.13)

The mean layer (Z=0 to Zs) temperature and height are defined by

:7To = - Z i0o(M) M (VI.14)

(VI.15)

- I
(VI.16)
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If b=0, then

EM-=- g n i ~ at- )$ (VI.17)

Otherwise

(VI.18)

The equations used by the LFM and Spectral models are approximations to (VI.18).

The Spectral model equation is

_q -7; ,,~ (pr/ M EM = iS + + _ 4 b fR (+ S:/ ) (VI.19)g

while the LFM uses (VI.17) with To replaced by l/2(To+Ts).

VII. Methods Used by Operational Models

A short sketch of the vertical interpolation used by the NMC models will

be listed. To a reasonable degree, the recommendations of this note are

already followed, but no model has complete consistency.

A. LFM-INI (subroutine PTOSIG)

Surface pressure - interpolation to ground height assumes T lnp.

Heights at sigma-levels- interpolation assumes T clnp. The same

form is used to get mandatory level heights on output.

Potential temperatures - generally obtained by J, ir form of hydro-

static equation from heights, but the lowest layer uses special technique

designed by J. Stackpole to utilize the surface temperature. The boundary layer

is an interpolation between the surface temperature and the first

mandatory level above, provided that Zs<Z8 5 0. The method assumes TC lnp.

The P definition is implicit in the choice of 0.

B. LFM-POST (subroutine SIGTOP)

Mid-layer - ir= At/K lnp. This is inconsistent and should be changed

to lr(P).
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Mid-layer pressure - p(1r). See above.

Level temperatures - interpolated using T cclnp, but with extrapolation

to tropopause. (Method (c) described in section VI.C.)

Level heights - by hydrostatic equation in 8, 1 form.

Tropopause temperature - average of extrapolations from above and below.

FD pressures - the method uses 1r to define mid-layer and the assumption

that O cO r. (This is a bad method and should be changed.)

FD winds, potential temperatures - interpolated linearly with respect

to .

Mandatory level winds, relative humidity, temperatures - interpolated

linearly with respect to lnp (but with mid-V' = . ). A standard lapse rate

of 6.5 x 1Q-3 deg/m is used below the middle of the lowest layer. (The dew

point is calculated according to the formula in Office Note 36.)

Mandatory level heights - interpolated assuming T cc lnp. The lapse

rates are specified from the level temperatures (specific as discussed above).

The SHUELL pressure reduction technique is used below ground. It uses T c Z

with specified lapse rates.

C. Spectral INI (subroutine PTOSIG)

Sigma-level heights- interpolation assumes ToClnp.

Sigma-layer temperatures - solved from hydrostatic equation in T, lnp

form, using level heights. The P definition is implicit is the hydrostatic

form uses. Note! The level heights are not used by the model. They are

only used to obtain the temperatures as described above.

Surface pressure (subroutine GETPS) - interpolated assuming T clnp.

D. Spectral POST (subroutine SIGTOM)

Mid-layer sigma - corresponds to V'= IrI/KA lnp.
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Level heights - solved from hydrostatic equation in T, lnp form.

Mid-layer i'- V.,

Mid-layer lnp - in of pressure corresponding to I.

Mid-layer p - p (arithmetic mean) (not p(ir)).

Level temperatures - interpolation or extrapolation assuming T oelnp.

Level temperature (also RH, U, V, w) - linear interpolation with respect

to lnp.

Mandatory level heights - interpolation using T oclnp except below ground

where SHUELL technique is used.

Level temperatures - are recomputed using T. Flattery's subroutine LOWTMP

if any levels are below ground.
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Appendix A. T oclnp

All the Appendices have the same form, each dealing with a different

temperature law. The parts are:

1. the temperature law

2. the hydrostatic equation, integrated through a layer

3. the equation relating the mid-layer coordinate and mid-layer

temperature

4. the equations for a reasonable choice of mid-layer coordinate and

mid-layer temperature

5. the hydrostatic equation, integrated through a partial layer, using

the choice for mid-layer coordinate and temperature

6. the method to obtain the pressure at a given height is presented

temperature law

-Y' --- = +p) P -- ln (pressure) (A.1)
hydrostatic equation for layer

a g =+ _),A-bF _R rf nP (A-21_~~ ~ _R (~ b',?- gp .
T,P equation

Solving (A.2) for T gives

- A-P (A.3)

choice of T,P

The following choice agrees with usual practice and eliminates b from

the expressions.

RAPT=~~~~~~~~~ - g(A.4)

~* P ~~~Pt A (A.5)
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hydrostatic equation for partial layer

Refer to Figure 15 for notation

: 0 ~~~~~~~~~RP E, = Ig(p T- PO) ( -o 9(2up4 (A.16)

pressure at given height

Refer to Figure 16 for notation

$ p= (A.17)
-- g (T + E,,A-AP) + A P)
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Appendix B. TCp

temperature law

(B.1)-T = t + bfr- F)

hydrostatic equation for layer

(B.2)--bAp
3J

T,p equation

Solving (B.2) for T gives

T -- -g_ A -
: AP

choice for T,p

One natural choice is

(B.3)

(as hefore)
(B.4)

hydrostatic equation for partial layer

hydrostatic equation for partial layer

-:e - g (T ,f) -

pressure at a given height

A numerical solution must be used. One method follows.

P'= Po - w, (Z- )

j " d 4•er ( P)

"P PP =JPo -

9 (-'') 4+ b -(p"'- -o)
_ : -_: (B.9)

For b= .04 deg/mb this scheme converges to 8 decimal places in about 9 scans.

(B.5)

(B.6)

and

Let

(B.7)

(B.8)

Az _ &-f-N)AP

T = A--a
R AP

g: b (P -Po
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Appendix C. T cor

temperature law

T- = T + b(ir- )

hydrostatic equation for layer

=-g(~b')aP Rh

T,p equation

Solving (C.2) for T gives

_gAP
b Atr
K AP

choice for T,p

One natural choice for T,3r satisfying (C.3) is

_ g AZ
- AP

hydrostatic equation for partial layer

hydrostatic equation for partial layer

-;~ -- (j: hw)(-P)-k-9 =-b j) p ' S

pressure at a given height

The equation must be solved numerically. One method follows.

Sir.o , Po = o 1000 b

se"l*I- k~-,- S)

(c.1)

(C.2)

(c.3)

(C.4)

(C.5)

(C.6)

Let

(C.7)

(c.8)

(C.9)

(,I- - irp)
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Pt I- " f- I

P h SpPo (C.ll)

For b=1 deg. the scheme converges to 9 decimal places in about 5 scans.

For b=10 deg the scheme c~onverges to 9 decimal places in about $ scans.
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Appendix D. ToC Z

temperature law

w- = T ~ b -) (D.1)

hydrostatic equation for layer (b#0)

DA = i q - (D.2)

T,p equation (bO0)

Solving (D.2) for T gives

-- - ~F T =-b (-Z + -& ) t:(D.3)

where 
(D.4)

choice for T,p (b#O)

One natural choice is

+ (D.5)

and then

Tt -/ ( -(D.6)

IF b=0, then (D.2) becomes

A~=- ~ T ]P (D.2a)

giving

~9 A^ Z-
~~T- ~~~~~- R A~' ~~(D.3a)

and the choice of Z is open. Certainly, (D.5) can still beused.

hydrostatic equation for partial layer

bA0

o +(+ (D.7)
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b=O

Z =-fo- Z o f--o y (p p. (D.7)

pressure at a given height

bO 0

(D.8)

b=0

Ip TP- Z-0) j(zgq ) (D.8a)
Probably (D.8a) should be used for a range of b near zero.
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temperature law

- , b(P-)

hydrostatic equation for layer

.a E= - f t A [. I(l' .a.9 K 
-jz tr] 4+ A.r-4, (* 1r) - I1/

o ,P equation

Solving (E.2) for 0 gives

Cp Z -6 -P + 6 , t, * + ,.

choice of , I

One natural choice is

9 A -
e clr Ai

(r* AIr)

and thus

-I~~-iT *+ -W -Z- e :(E.5)

hydrostatic equation for partial layer

1ir) )4I1Z- = o-a 0 3 K 

pressure at a given height

An interative solution is given below. Begin with

/ .9 /-
'P 0

24

9 C lnp

(E.1)

(E.2)

(E.3)

(E.4)

(E.6)

(E.7)

iKt
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Then use

h/tl
iT = Jr-

L1, ·eW, -o +) (~! ' 76) (e )q, (~r+ K o
O + b (f>,- P)

Iteration with b=30 deg gives 9-place accuracy after about 6 scans.

(E.8)
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Appendix F. 6 C p

temperature law 

o =eui fo -,F)

hydrostatic equation for layer

d- !(0L-)Apr I oo I,*).iA =0 - -r YI)
0 -9

V,P equation

Solving (F.2) for e gives

0 = - % AZ I tIV

choice of ff f

A natural choice is

= cp a r ;

i'v: J•gLKf-1 KJ
- = 10 (fg-4 Lc I

hydrostatic equation for partial layer

pressure at a given height

A numerical solution is needed. One possibility follows.

11"= zo
ere

(F.8)

With b=.06 deg/mb this scheme takes about 13 scanes to converge to 9-place

accuracy.

(F.1)

(F.2)

-+1 if K jJ
(F.3)

(F.4)

(F.5)

(F.6)

(F.7)
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Appendix G. O wc Ir

temperature law

@= ss b~~~~~~~ar-r) ~~~(G.13

hydrostatic equation for layer

3e=~J- -v( -- r Jr ) bAr Al)1 V- (G. 2)

Ol,Tr equation

Solving (G.2) for 8 gives

e A (G.3)

choice of T;r

A natural choice is

0--
A~ ~ :

C A t' (G.4)

fr ~2.~~~~~~~ ; (G.5)

hydrostatic equation for partial layer

- b + (G.6)

pressure at a given height

172g1' r(.7): - cpS sF , cplif-Jo~~~+ ie)] +g-br 0,)] +2 st
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Appendix H. 6 C Z

temperature law

(H. 1): = - + b t/ -~)

hydrostatic equation for layer

AZ- = EZ + I rLip .+. f-1)b IL

where

6f, = equationJ" , equation:

(H.2)

(H.3)

(H.4)

(H.5)

S = b(& -z H-)

choice of ,Z

One reasonable choice is

giving

- - 2~ ~f-,)2 (Lt1- 

hydrostatic equation for partial layer

pessure at aiven height
pressure at a given heightv:

pressure at a given height

(H.6)

(H.7)

gt = -° w '/

= tof

F+ b(z -
(H.8)

(H.9)
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Figures

Data arrangement for solution for pressure at given height.

Mean and RM4S errors as function of pressure for the 8 temeprature laws.

Frequency distribution of errors, averaged with respect to pressure

(4 temperature laws in each figure).

Data arrangement for manadatory levels and both stagered and unstaggered

model structure.

Data arrangement for determination of lapse rates.

Data arrangement for SHUELL pressure reduction.

Data structure for layer.

Data structure for partial layer.

1.

2-9.

10-11

12.

13.

14.

15.

16.
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